

TECHNOLOGY PROFILE

創造力と総合力

We meet the needs of our

代表取締役社長
President

白水 靖郎
Yasuo Shiromizu

都市及び地方計画 P01	河川・砂防・下水道 P08	地盤 P15
<i>Urban and Regional Planning</i>	<i>River, Sabo, Sewerage Systems</i>	<i>Geotechnology</i>
交通計画 P02	橋 梁 P09	事業評価・社会的合意形成 P16
<i>Transportation Planning</i>	<i>Bridge</i>	<i>Project Evaluation and Social Consensus Formation</i>
環境 P03	地下構造 P10	補 償 P17
<i>Environment</i>	<i>Underground Structure</i>	<i>Compensation</i>
防 災 P04	山岳トンネル P11	測 量 P18
<i>Disaster Prevention</i>	<i>Tunnel</i>	<i>Survey</i>
鉄軌道 P05	設 備 P12	BIM/CIM・インフラDX P19
<i>Railway</i>	<i>Facilities</i>	<i>BIM/CIM・Infrastructure DX</i>
道 路 P06	建 築 P13	
<i>Road</i>	<i>Architectural Design</i>	
港 湾 P07	メンテナンスマネジメント P14	
<i>Port and Harbor</i>	<i>Structural Maintenance and Management</i>	

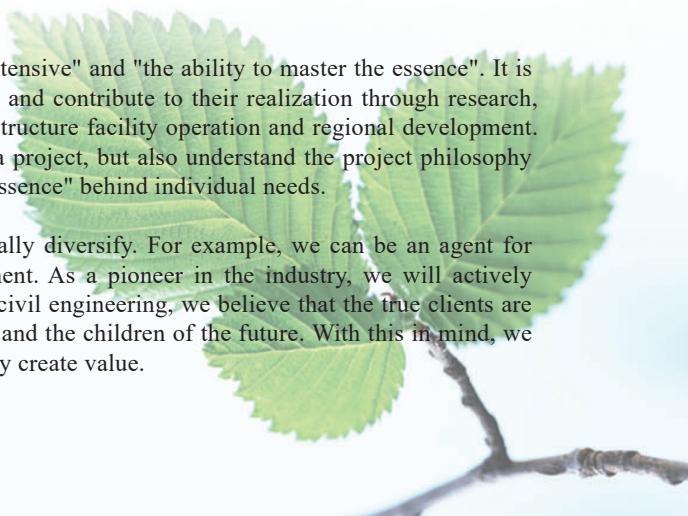
お客様のニーズにお応えします

customers with creativity and comprehensive knowledge

中央復建コンサルタンツ株式会社は、1946年（昭和21年）に創設された社団法人復興建設技術協会を前身とし、戦災復興や高度成長といった時代の社会ニーズに応えて社会基盤の整備に貢献してきました。現在では、鉄道・道路・港湾等の計画・設計・維持管理、国土・交通計画や地域づくり、地盤等の調査・解析、環境影響評価等の各分野でトップレベルの技術者を擁する総合コンサルタントとして、国内外の様々なプロジェクトに参画しています。

近年、激甚化する自然災害やインフラ老朽化への対応など、取り組まねばならない課題が多くあります。カーボンニュートラルやネイチャーポジティブといった地球規模の課題、SDGsが目指す「誰一人取り残さない」という思想、ポストアーバン時代における人々の価値観の変化など、インフラを取り巻く環境は大きく変わりつつあります。ICTやAIといった新技術を、インフラや交通分野に活用するシーンも増えています。

このような時代だからこそ、当社が大切にしたいのは「プロジェクト志向」と「本質を極める力」。プロジェクトの構想段階から関わり、調査・計画・設計を通じてその実現に貢献し、インフラ施設運営や地域づくりまで継続的・能動的に取り組むことが大事です。このような志向性により、プロジェクトの各段階におけるニーズに応えるだけでなく、プロジェクトの思想や時代の変化を理解し、個別ニーズの奥にある「本質を捉えた価値創造」に繋げます。


これらを通じて、自ずと建設コンサルタントの役割も多様化します。例えば、発注者のエージェント、プロジェクトのコーディネーター、地域づくりのプレイヤー。当社は、業界のパイオニアとして、新しい役割についても積極的に挑戦します。土木に携わる者にとって、真の意味での発注者は、インフラを使う市民、ものを言わない自然、そして未来の子供たちと考えます。そのことを念頭に置き、能動的に価値創造を行う技術者集団として挑戦を続けます。

Chuo Fukken Consultants Co., Ltd. was founded in 1946 as a predecessor to the Incorporated Association, and has contributed to the development of social infrastructure in response to the needs of society from time to time, such as war damage reconstruction and rapid economic growth. Today, we participate in a wide variety of projects in Japan and abroad as a general consultant with top-level engineers in the fields of planning, design, and maintenance of railways, roads, and ports; land and transportation planning and regional development; geotechnical investigation and analysis; and environmental impact assessment.

In recent years, there have been many issues that must be addressed, such as the response to intensifying natural disasters and aging infrastructure. The environment surrounding infrastructure is changing dramatically, including global issues such as carbon neutrality and nature positive, the SDGs' "No one will be left behind" philosophy, and changes in people's values in the post-urban era. New technologies such as ICT and AI are increasingly being utilized in the infrastructure and transportation fields.

It is precisely because we live in such an era that we value "Project intensive" and "the ability to master the essence". It is important for us to be involved in projects from the conceptual stage and contribute to their realization through research, planning, and design, and to work continuously and actively on infrastructure facility operation and regional development. With this intentionality, we not only meet the needs at each stage of a project, but also understand the project philosophy and changes of the times, leading to "Value creation that captures the essence" behind individual needs.

Through these efforts, the roles of civil engineering consultant naturally diversify. For example, we can be an agent for clients, a coordinator for projects, or a player in regional development. As a pioneer in the industry, we will actively challenge ourselves to take on new roles. For those of us involved in civil engineering, we believe that the true clients are the citizens who use the infrastructure, the nature that does not speak, and the children of the future. With this in mind, we will continue to take on challenges as a group of engineers who actively create value.

都市及び地方計画分野

Urban and Regional Planning

多様性に富んだ活力ある
個性的なまちづくり・地域づくりを行います

We will promote our activities in an effort to create diversified, vigorous, distinctive cities and communities.

少子高齢化や人口減少が進む我が国において、都市や地域の抱える問題を解決し、災害に強い魅力ある良好な都市環境を形成することが求められています。

私たちは、それぞれの都市や地域が保有する自然・文化・歴史等の固有の資産を積極的に活用するとともに、近年ますます多様化している人々のニーズを反映した多様性に富んだ活力ある個性的なまちづくり・地域づくりを行います。

また、これまでの計画技術の蓄積を生かし、東日本大震災からの復興計画の策定、事業化、産業再生、誇りと愛着を持てるまちづくり、事業コーディネート等に関与し総合的な復興まちづくりを支援しています。


As the Japanese society is increasingly facing a declining birthrate with an aging population and decrease in the population, it is required to resolve such problems which cities and communities have and develop a disaster-proof, attractive, and favorable urban environment.

While proactively utilizing inherent resources, such as nature, culture, and history which each of cities and communities preserves respectively, we will be also committed to promoting our activities in a bid to create diversified, vigorous, distinctive cities and communities by reflecting public needs that are recently becoming more and more diverse.

We support urban revival planning with accumulation of our planning technology, through making revival plan, realization, industrial regeneration, urban planning based on pride and love, and project coordinating from the Great East Japan Earthquake.

女川町復興まちづくりのコーディネート
Coordinating urban revival planning in Onagawa Town

立地適正化計画における
都市機能区域の検討(坂出市)
Study of Urban Function Zone in
Location Optimization Plan
(Sakaide City)

3Dモデルを活用した
街路景観検討(京都市)
Study of Street Scapes Using
3D Models (Kyoto City)

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
香川県坂出市 Sakaide Municipal Government, Kagawa Prefecture	坂出市立地適正化計画更新業務 Renewal work for the location optimization plan in Sakaide City	2024
奈良県宇陀市 Uda Municipal Government, Nara Prefecture	第2次宇陀市総合計画後期基本計画策定支援業務 Supporting Uda City to formulate late-term basic programs of the second comprehensive plan	2024
京都府京都市 Kyoto Municipal Government, Kyoto Prefecture	魅力ある京の広告景観づくり推進業務委託 Commissioned work for promoting attractive advertising landscapes in Kyoto	2024
宮城県牡鹿郡女川町 Onagawa Municipal Government, Miyagi Prefecture	女川町復興まちづくり整備事業コーディネート業務 Coordinating urban revival planning project in Onagawa Town	2013～2020
大阪市 Osaka Municipal Government	新たな観光拠点の形成に向けた夢洲まちづくり構想検討調査(臨海部交通アクセス検討調査) Survey to examine the concept of development of Yumeshima as a "SMART RESORT CITY" aiming at the establishment of new tourism hub (survey to examine waterfront transportation accessibility)	2017

交通計画分野

Transportation Planning

人・モノの移動を支える質の高い交通計画を行います

We make high-quality transportation plans that support the movement of people and things.

人やモノが活発に移動し、すべての人々が安全・安心・快適に移動できる交通インフラ環境を整備することが必要です。

私たちは、ビッグデータ等を活用しながら公共交通（鉄道・新交通システム・LRT・BRT・バス・コミュニティサイクル等）に関する総合的な計画や、人を中心の生活空間やまちなか空間の創出に関する質の高い交通インフラ整備に取り組んでいます。また、MaaS（Mobility as a Service）、IoT、AI、自動運転、パーソナルモビリティ、（ライド）シェアリングなどの新技術に関する交通計画にも取り組んでいます。

It is required to develop an environment for transportation infrastructure that facilitates both people and things moving lively and enables everyone to move safely, relievedly, and comfortably.

Through utilization of big data, etc., we are committed to comprehensive planning of public transportation (railways, new transportation system, LRT: Light Rail Transit, BRT: Bus Rapid Transit, bus, Community Cycle, etc.) and development of high-quality transportation infrastructure concerning human-oriented living space and creation of central urban area. In addition, we are also engaged in transportation planning relating to new technologies, such as MaaS (Mobility as a Service), IoT (Internet of Things), AI (Artificial Intelligence), Self- driving, personal mobility, and ride-sharing services, etc.

宇都宮LRT
Utsunomiya LRT

大阪市内 自動運転バス実証実験
Self-driving bus demonstration experiment in Osaka

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
国立研究開発法人産業技術総合研究所／経済産業省 National Institute of Advanced Industrial Science and Technology/ Ministry of Economy, Trade and Industry	AI技術を活用した移動販売の持続性向上による豊かな暮らしの実現へ(地域新MaaS創出推進事業) Improving the Sustainability of Mobile Sales Using AI Technology to Realize Prosperous Lifestyles (New Regional MaaS Creation Promotion Project)	2021
大阪市高速電気軌道株式会社・大阪シティバス株式会社 Osaka Metro Corporation, Osaka City Bus Corporation	自動運転バス営業化に向けた事業推進及び実証実験事業推進支援業務 Business promotion for commercialization of self-driving bus and promotion support business for demonstration experiment business	2019
宇都宮市 Utsunomiya Municipal Government	JR宇都宮駅西側LRT導入方策等検討調査業務 A study of LRT introduction measures of JR Utsunomiya station west-side	2017～2022
大津市、久御山町、八尾市、朝来市、宇陀市、紀の川市 ほか Otsu City, Kumiyama Town, Yao City, Asago City, Uda City, Kinokawa City etc	地域公共交通計画・地域公共交通網形成計画策定業務 A planning future for public transportation in urban and rural region	2016～
近畿地方整備局・中部地方整備局 他 MLIT Kinki Regional Development Bureau, MLIT Chubu Regional Development Bureau	大都市圏総合都市交通体系調査(近畿圏、中京都市圏) A survey on urban area comprehensive transportation system (Kinki urban area, Chukyo urban area)	1970～

環境分野

Environment

持続可能な社会づくりに貢献しています

A commitment to contributing to the creation of a sustainable society.

私たちは、鉄道や道路などの社会資本整備のための開発事業において、生活環境や自然環境への影響を低減するため、環境アセスメントを行い、環境保全のための対応策を提案しています。さらに、影響の低減にとどまらず、より良い環境を創造するため、水環境改善やグリーンインフラなどにも取り組んでいます。

また、我々を取り巻く環境は、地球規模での気候変動の影響が顕在化していますが、脱炭素社会実現に向け、地域脱炭素や再生可能エネルギーに関するプロジェクト実現のための検討を行っています。

In development projects for social infrastructure such as railways and roads, we carry out environmental impact assessments to minimize their impacts on both the living and natural environments. We also propose effective measures for their conservation, and work to create a better environment through initiatives such as improving aquatic ecosystems and advancing the application of green infrastructure.

As the effects of global climate change become increasingly evident, we are also actively exploring and promoting projects related to regional decarbonization and renewable energy to help realize a carbon-neutral society.

生活環境との調和を考えたセミシェルター型防音壁の設計
The design of semi-shelter type noise barriers to preserve a peaceful living environment

風力発電所の事業可能性調査
Feasibility study for wind power generation projects

巣箱で確認されたフクロウの雛
Owl chicks confirmed in nest boxes

巣内のサシバ親子
(無人カメラで撮影)
Performing ecological monitoring such as recording nesting Grey-faced buzzards with unmanned cameras

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
環境省 水・大気環境局 Ministry of the Environment, Water and Atmospheric Environment Bureau	令和6年度我が国の環境騒音に係るあり方に関する検討業務 Investigation in to the Future Direction of Environmental Noise Policy in Japan	2025
東京都都市整備局 Tokyo Metropolitan Government, Bureau of Urban Development	令和6年度グリーンインフラ機能を活かした立体的な緑化の推進調査 Study on the Promotion of Three-Dimensional Greening Utilizing Green Infrastructure Functions	2025
東京地下鉄株式会社 Tokyo Metro Co., Ltd	都市高速鉄道第7号線品川～白金高輪間建設事業 環境影響評価 Environmental Impact Assessment for the Construction of Urban High-Speed Railway Line No. 7 (Shinagawa – Shirokane-Takanawa Section)	2024
国土交通省 近畿地方整備局 紀南河川国道事務所 MLIT Kinki Regional Development Bureau, Kinan Office of River and National Highway	すさみ串本道路動植物環境調査業務 Ecological Survey of Flora and Fauna along the Susami Kushimoto Road	2023
名古屋市 環境局 Nagoya Municipal Government, Environmental Affairs Bureau	市域の産業分野等における水素潜在需要量等の調査委託 Investigation of Potential Hydrogen Demand in Industrial Sectors Within the City of Nagoya	2022

防災分野

Disaster Prevention

激甚化する災害から地域やまち、生活を守ります

Protecting communities, cities,
and people's lives from increasingly severe disasters

我が国は、地震や津波、台風、高潮、大雨、洪水、土砂災害など多種多様な災害リスクを抱えています。私たちはこれらの災害に対して安全・安心な地域やまちをつくるため、全社を挙げて国土の強靭化、防災・減災対策に取り組んでいます。

激甚化する災害から私たちの生命や財産を守るために、防災施設の点検調査から各種被害想定、防災・減災・危機管理計画の検討、防災施設の設計、避難計画・情報提供システムの検討、復旧復興計画の検討などソフトからハードまで幅広く対応いたします。

We are at risk of a wide variety of disasters, including earthquakes, tsunamis, typhoons, storm surges, heavy rainfall, floods, and landslides. To create safe and secure communities and cities against such disasters, we are making company-wide efforts to strengthen the national land and realize disaster prevention and mitigation.

In order to protect our lives and property from increasingly severe disasters, we provide a wide range of services from software to hardware, including inspections and surveys of disaster prevention infrastructures, various damage estimates, studies of disaster prevention, mitigation, and crisis management plans, designs of disaster prevention infrastructures, evacuation plans and information provision systems, and restoration and reconstruction plans.

南海トラフ巨大地震による大阪府内の道路啓開計画(浸水検討)
Elimination planning of road obstacles by Nankai megathrust earthquake in Osaka Prefecture (Inundation measures)

(道路防災対策検討業務)
(Measures for road disaster prevention)

設計した崩壊土砂防止柵により土砂災害を防いた事例(道路防災点検・防災設計)
Example of sediment disaster protection by designed collapse prevention fence
(Inspection and design for road disaster prevention)

地下街浸水から三次元流体シミュレーション・
地下空間防災システムへの技術開発と成果提供
Study of flood of underground shopping areas, and technological development
and application of 3D fluid simulation-based disaster prevention systems
for underground spaces

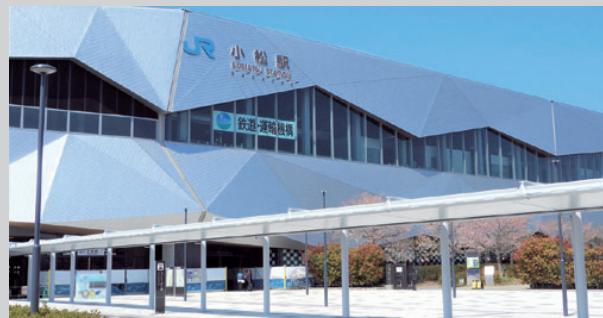
主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
内閣官房 Cabinet Secretariat	国土強靭化施策の効果検証及び政策マネジメント手法に関する調査・検討業務 Study on the effectiveness of national resilience measures and policy management initiatives	2025
名古屋港管理組合 Nagoya Port Authority	大江川地区地震・津波対策調査および設計 Formulation of plans and facility design for earthquake and tsunami countermeasures in the Oegawa area	2018～2025
東京都交通局 Tokyo Metropolitan Bureau of Transportation	地下鉄道の火災対策基準に基づく避難安全に関する検証等委託 Verification of evacuation safety based on fire prevention standards for subways	2025
国土交通省都市局 MLIT City Bureau	令和6年能登半島地震からの復興に向けた官民連携まちづくり手法及びデジタル技術の活用方策検討業務 Study on public-private partnership urban development methods and utilization strategies of digital technologies for recovery from the Noto Peninsula Earthquake	2025
中部地方整備局 高山国道事務所 MLIT Chubu Regional Development Bureau, Takayama Office of National Highway	令和4年度 高山国道管内防災点検設計業務(局長表彰 受賞) Inspection and design for disaster prevention	2024

鉄軌道分野

Railway

鉄道事業の推進に豊富な知識と経験を活かします


We fully utilize our long experience
in railway projects

通勤・通学など私たちの日々の暮らしを支える都市鉄道。地方と都心を繋ぐ新幹線。これら鉄道軌道は、利用者の利便性向上にくわえ、地域の発展や経済・社会活動の基盤としても大きな役割を果たしています。

私たちは、新幹線、都市鉄道、地下鉄、新交通システム等あらゆる種類の鉄軌道の計画・設計を行っています。また技術分野は、路線計画、線形・配線計画、線路構造物（高架橋、橋梁、トンネル、盛土・切土）や線路交差構造物（踏切道、二線橋、線路下横断道）の計画・設計、駅・車両基地の計画・設計など多岐にわたっています。

Urban railroads support our daily lives, such as commuting to work and school. Shinkansen (bullet train) connect rural areas with urban centers. In addition to improving convenience for users, these railroads play a major role in regional development and as a foundation for economic and social activities.

We engage in planning and designing for a whole range of railways such as shinkansen (bullet train), urban railway, subway, and automated guideway transit. In addition, we cover a broad range of technical fields, including railroad alignment, track layout, railroad track structures (viaducts, bridges, tunnels, and embankments), railroad track crossing structures (railroad crossings, overpass and underpasses), stations, and rail yards.

北陸新幹線 小松駅高架橋の設計
Komatsu Station viaduct, Hokuriku Shinkansen

名古屋鉄道河和線 加木屋架道橋の設計
Kagiyama Overpass, Meitetsu Kowa Line

南海本線・高師浜線(高石市)連続立体交差事業の構造物設計
Continuous Grade Separation Project, Nankai Main Line and Takashinohama Line

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
東京地下鉄株式会社 Tokyo Metro Co., Ltd.	有楽町線延伸 千石停車場(仮称)基本設計 A basic design of Sengoku Station (tentative), Yurakucho Line Extension	2022
株式会社大阪メトロサービス Osaka Metro Services Co., Ltd.	夢洲駅(仮称)詳細設計 A detailed design of Yumeshima Station (tentative)	2022
大阪府 Osaka Prefecture Government	大阪モノレール延伸 鴻池新田駅(仮称)詳細設計 A basic design of Kounoikeshinden Station (tentative), Osaka Monorail Extension	2021
沖縄県 Okinawa prefecture Government	沖縄鉄軌道導入に向けた検討 A study of introduction of Okinawa railway	2020
名古屋鉄道株式会社 Nagoya Railroad Co., Ltd.	名古屋鉄道瀬戸線 喜多山駅付近鉄道高架化に伴う構造物詳細設計 A structural detailed design of Elevated railroad project of around Kitayama Station on the Meitetsu Seto Line	2018

道路分野

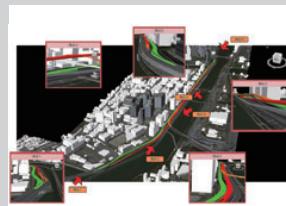
Road

多様なニーズを道路に反映させます

We reflect diverse users' needs on roads

快適で安全・安心な社会、魅力的で競争力のある持続可能な社会、これらを構築するためにはその基盤となる良質な道路空間と道路ネットワークの整備・運用が欠かせません。

私たちは、高規格道路からコミュニティ道路まで様々な「みちづくり」を行っており、都市内および都市間の交通利便性や物流機能の向上、地域社会の活性化、防災機能の強化、老朽化施設の維持更新など多種・多様なニーズを取り込んだ成果を提供し、より豊かな社会の実現に貢献していきます。


In order to build a comfortable, safe, and secure society, as well as an attractive, competitive, and sustainable society, it is essential to develop and operate high-quality road spaces and road networks that serve as the foundation.

We conduct "Making Road" so deliver results to reflect diverse needs in road planning and designing from expressway to community road. Improvement of traffic convenience and logistics function, vitalization of local communities, reinforcement of disaster prevention functions, maintenance and renewal of old facilities, etc. With all these, we intend to contribute the realization of much more wealthy society.

都心街路の空間デザイン
Space design of downtown street

都市計画道路の整備
Development of city planning roads

都市高速の大規模更新
Large-scale renewal of urban expressways

ラウンドアバウトを利用した
スマートIC
A smart interchange using roundabout

物流と観光の共存と振興を目的とした基盤道路ネットワークの構築
Construction of a basic road network aimed at coexistence and promotion of logistics and tourism

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
名古屋高速道路公社 本社 Nagoya Expressway public corporation.	令和4年度名古屋高速道路リフレッシュ工事影響調査等業務 Nagoya Expressway refreshment work impact survey, etc.	2023
中部地方整備局 高山国道事務所 MLIT chubu Regional Development Bureau, Takayama Office of National Highway	令和4年度飛騨地域道路網調査業務 A study of road network in Hida region	2023
東京都南多摩西部建設事務所 Tokyo Metropolitan Government. Minamitama Seibu Construction Office	道路予備補足設計(3南西一八王子3・3・74) A preliminary supplemental design of city planning road Hachioji 3・3・74	2022
阪神高速道路株式会社 本社 Hanshin Expressway Company Limited. Head Office	阪神圏のネットワーク強化検討業務(2021年度) A study of reinforcement the traffic network of Hanshin area	2022
東北地方整備局 磐城国道事務所 MLIT Tohoku Regional Development Bureau, Iwaki Office of National Highway	田人地区災害復旧設計業務 A disaster restoration design in Tabito area	2020

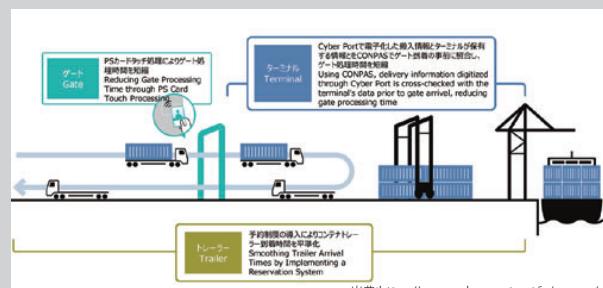
港湾分野

Port and Harbor

元気で強いみなとづくりで日本の成長、
社会の発展に貢献します

We contribute to growth of Japan and development of
society by making lively and strong port and harbor

私たちは、臨海部の空間デザイン、港湾物流改善、港湾関連事業評価、津波シミュレーション、静穏度解析などの技術調査や、外郭、係留、水域施設などの設計、FLIPによる耐震性能照査を行っています。最近では、地震や津波の作用を連続して受ける施設の設計・検討、施設の長寿命化を目指した維持管理計画策定や補修設計、BIM/CIMモデルの構築、係船柱の小型化に関する検討、コンテナ関連調査、港湾の利用促進に向けた施策提案、さらには港湾・空港の脱炭素に向けた調査を行っています。


We provide a wide variety of technical services associated with port and harbor, such as waterfront spatial design, improvement of freight transportation evaluation, valuation of port-related projects, tsunami simulation, and tranquility analysis. We also specialize in designs of outside facilities, mooring facilities, water area facilities of port, and seismic assessment by FLIP. In recent years, we engage in design and study of facilities continuously subjected to the action of earthquakes and tsunamis, Design and study of facilities continuously subjected to the action of earthquakes and tsunamis planning of maintenance and management for life extension of facilities, reinforcement design, BIM/CIM modeling and study on downsizing of mooring poles, survey of commodity distribution associated with freight containers, proposition of measures aiming to promote port and harbor utilization, and survey of decarbonizing ports and airports.

3次元モデルによる配筋状況の確認
Reinforcement confirmation using 3D models

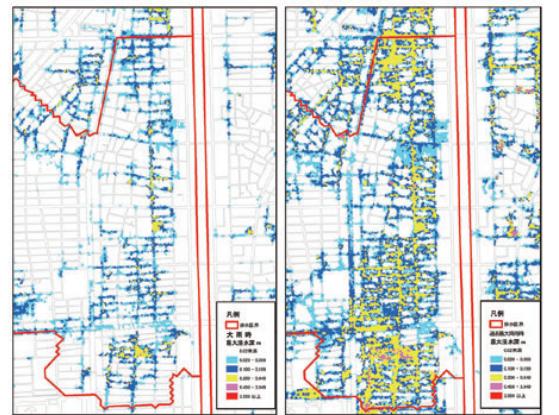
クルーズバースの施設配置計画・設計(佐世保港)
Facility layout planning, design of cruise berths (Sasebo port)

CONPAS導入により期待される効果
Expected effects of introducing CONPAS

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
国土交通省 九州地方整備局 など MLIT Kyushu Regional Development Bureau and others	港湾の施設の現況調査、新設・改良・補修設計、施工に向けた実施設計 Survey of existing port facilities, design of new, improved, and repaired facilities, and detailed design for construction	2016～2025
名古屋港管理組合 Nagoya Port Authority	港湾施設の定期点検等調査、維持管理計画策定・更新、補修設計 Regular inspection and survey of port facilities, formulation and renewal of maintenance plans, and repair design	2016～2025
国土交通省 関東地方整備局 MLIT Kanto Regional Development Bureau	コンテナターミナルにおけるICT技術を活用した物流効率化 "CONPAS" CONPAS: Enhancing Logistics Efficiency in Container Terminals with ICT Technology	2018～2025
香川県土木部 Kagawa prefecture Civil engineering department	高松港港湾脱炭素化推進計画検討業務委託 Contracted Study for the Development of a Port Decarbonization Promotion Plan for Takamatsu Port	2023～2024
国土交通省 近畿地方整備局 MLIT Kinki Regional Development Bureau	阪神港におけるコンテナ貨物の集貨・創貨方策検討 A study of collection and creation of container cargo in Hanshin port	2015～2016

河川・砂防・下水道


River, Sabo, Sewerage Systems

「水」を総合的にプロデュースします

We utilize and manage "water" in a comprehensive way

生活空間の安全・安心を確保するため、流域治水を踏まえた河川・砂防や下水道の計画・設計等を行っています。また、よりよい環境づくりのための景観・親水・水質・防災・生態系などに配慮した水辺空間づくりや、持続可能な社会構築のためのアセットマネジメントや下水熱利用(特許取得済)にも取り組んでいます。

For the safety and security of life space, we carry out planning and design of rivers, erosion control, and sewerage systems based on basin flood control. We are also engaged in creating waterfront space giving consideration to aesthetics, water quality, disaster prevention and riparian ecosystem in order to provide a favorable environment. In addition, we deal with the issue of asset management and utilization of sewerage heat (Patented) for the sake of building a sustainable society.

下水管路網モデルを活用した浸水解析(左:大雨時、右:過去最大降雨時)
Analysis of inundation using a sewage pipe network model
(left: Heavy rainfall, right: Past maximum rainfall)

自然再生事業の検討
Design of nature restoration project

iRICを用いた河川流況解析(流速ベクトル図)
River flow analysis using iRIC (velocity vector diagram)

魚がのぼりやすい川づくりの推進(魚道設計)(左:設計前 右:施工後)
Promotion of the river that fish easily run-up (design of a fish ladder)
(left: before the project right: after the project)

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
近畿地方整備局 琵琶湖河川事務所 MLIT Kinki Regional Development Bureau, Biwako Office of River	琵琶湖管内河川管理施設監理検討他業務 A study of the management and supervision for river management facilities	2024
中部地方整備局 静岡河川事務所 MLIT Chubu Regional Development Bureau, Shizuoka Office of River	令和5年度 安倍川水系砂防堰堤予備設計業務 A preliminary design of Sabo Dams in the Abe River System	2024
近畿地方整備局 和歌山河川国道事務所 MLIT Kinki Regional Development Bureau, Wakayama Office of River and National Highway	大門川導水計画検討業務 A study of the water diversion plan for the Daimon River	2024
国土交通省 國土技術政策総合研究所 MLIT National Institute for Land and Infrastructure Management	河川又はダムを活かした公園緑地の整備等に関する調査業務 A survey of the development of park and open space using rivers or dams	2024
静岡県掛川市 Kakegawa Municipal Government, Shizuoka Prefecture	令和4年度 市単河川整備事業 掛川市総合治水計画策定業務委託 A planning of the comprehensive flood control measures for Kakegawa City	2023

橋梁分野

Bridge

全ての人に末永く愛され活かされる橋づくりを

We take on the challenge of improving our technology
for bridge construction loved and used forever by all people

鋼構造、プレストレスト・コンクリート構造、鉄筋コンクリート構造ならびに複合構造の橋梁、高架橋、ペデストリアンデッキ・人道橋などの各種構造物の調査、計画、設計、解析を行っています。人々に末永く愛され活かされる橋づくりを目指して、新技術・新工法の活用、BIM/CIMの導入のほか著名橋を始めとする既設橋梁の長寿命化対策を目的とした点検、詳細調査、診断、補修・補強設計、耐震補強設計にも積極的に取り組んでいます。

We specialize in survey, planning, designing and analysis of structures ranging from viaducts, pedestrian decks and footbridge, to bridges with different types of structural materials, such as steel, pre-stressed concrete, reinforced concrete, and compositional. We are also engaged in the utilization of new design technologies and construction methods, and the introduction of BIM/CIM (Building/Construction Information Modeling, Management) aiming at bridge construction loved and used forever by people. In addition, we develop inspection, detail research, diagnosis, repair, reinforcement design and seismic reinforcement design of existing bridges including famous bridges for life extension.

「西船場ジャンクション(大阪港線拡幅部、渡り線)」
鋼床版箱桁橋、鋼連続鋼桁橋の改築設計(土木学会田中賞2019)
Nishisenba JCT (Osaka Port Line Widening Department, Crossover Line),
a steel slab box girder bridge, a successive steel girder bridge

「小名浜マリンブリッジ(3号ふ頭部)」PC4径間連続箱桁橋の設計
(土木学会田中賞2018)
Onahama marine bridge (No.3 dock),
a successive pre-stressed concrete box-girder bridge with four spans

「渋谷東口デッキ」デザイン新を図った都市内大規模デッキ架替え設計
Shibuya Higashiguchi deck, a replacement design for change all outline of large city decks

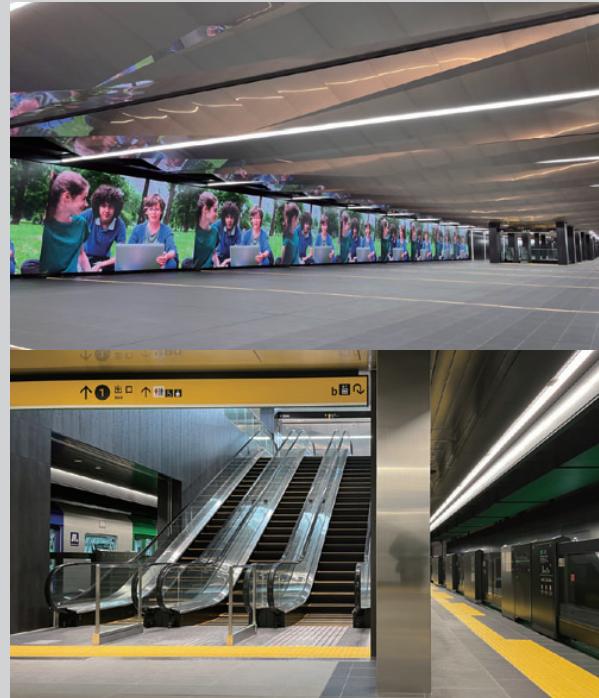
主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
近畿地方整備局 滋賀国道事務所 MLIT Kinki Regional Development Bureau, Shiga Office of National Highway	野洲栗東バイパス出庭高架橋詳細設計業務(局長表彰・技術者表彰 受賞) A detailed design of Deba viaduct, Yasu-Ritto Bypass	2020
近畿地方整備局 紀南河川国道事務所 MLIT Kinki Regional Development Bureau, Kinan Office of River and National Highway	新宮紀宝道路橋梁詳細設計業務(局長表彰・技術者表彰 受賞) A detailed design of bridge, Shingu-Kihou road	2017
東北地方整備局 福島河川国道事務所 MLIT Tohoku Regional Development Bureau, Fukushima Office of River and National Highway	平成27年度 掛田橋詳細設計業務(局長表彰・技術者表彰 受賞) A detailed design of Kakeda Bridge	2016
首都高速道路株式会社 神奈川建設局 Metropolitan Expressway Company Limited, Kanagawa Construction Bureau	横浜環状北西線 青葉地区上下部実施設計(1)(社長表彰 受賞) An execution design of Aoba section in Yokohama Circular Northwestern highway (1)	2016
東京都 Tokyo Metropolitan Government	聖橋長寿命化詳細補足設計(その2) A supplementary design of Hijiri bridge for life extension (No.2)	2016

地下構造分野

Underground Structure

地下空間の未来に挑戦します!


We are taking on the challenge of shaping the future of underground spaces!

道路トンネル、地下鉄、地下駐車場、地下街・地下通路、共同溝(電線共同溝)など、多岐にわたる都市土木施設の計画から設計、施工計画や維持管理計画に至るまで一貫して取り組んでいます。

また、近年の都市再生プロジェクトに伴う都市鉄道や道路等の計画・設計、大規模再開発に伴う新設ビルと地下鉄・地下街等との接続、さらに既設地下構造物を大規模に拡幅する改良設計等に関して十分な実績を有しています。

We engage in planning, designing, construction scheme, and maintenance management of wide range of urban civil engineering facilities, such as urban road tunnel, subway, underground parking, underground shopping space and common utility conduit. We have built up achievements in improvement designs of existing underground structures. We have extensive experience in planning and designing urban railways and roads as part of recent urban regeneration projects.

Also includes the connection of a new building with a subway station and underground shopping area in large-scale redevelopment projects, as well as designing major improvements such as the widening of existing underground structures.

北港テクノポート線・夢洲駅の設計
Designed Yumeshiba Station on Hokko Technoport Line

画像提供:鹿島建設株式会社

阪神高速道路
淀川左岸線(2期)
トンネル整備工事-3
Hanshin Expressway
Construction Work for the
Yodogawa Left Bank Line Tunnel

首都高速中央環状品川線
換気所およびシールドトンネル
開口補強設計
Designed ventilation station and
aperture reinforcement of shield tunnel,
Metropolitan Expressway Chuo Circular
Shinagawa Highway

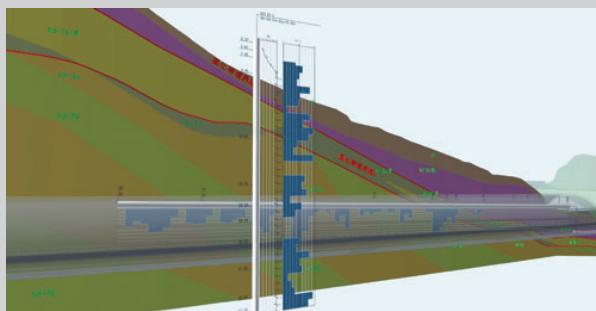
主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
関東地方整備局 首都国道事務所 MLIT Kanto Regional Development Bureau, Metropolitan Area Office of National Highway	R5北千葉道路(市川・松戸)トンネル詳細設計業務 A detailed design of tunnel, Kita-Chiba Road (Ichikawa-Matsudo)	2025
近畿地方整備局 奈良国道事務所 MLIT Kinki Regional Development Bureau, Nara Office of National Highway	大和北道路シールドトンネル南側換気所躯体詳細設計業務 A detailed structural design of the south ventilation station for the shield tunnel, Yamato North Road	2025
東京都建設局第一建設事務所 Tokyo Metropolitan Government Construction Bureau, The 1st Construction Office	日比谷地下自動車道及び日比谷共同溝改修設計(基本設計) An improved design for the Hibiya underground expressway and the Hibiya common duct.	2021
東京都交通局 Tokyo Metropolitan Bureau of Transportation	浅草線泉岳寺駅改良に伴う土木詳細(その3)、(その4)及びその他業務 A detailed civil engineering design for the improvement to Sengakuji Station on the Asakusa Line	2025
関西高速鉄道株式会社 Kansai Rapid Railway Co., Ltd	なにわ筋線南海新難波駅付近～新今宮駅付近土木詳細設計業務 A detailed civil engineering design from Shin-Namba Station to Shin-Imamiya Station	2025

山岳トンネル分野

Tunnel

豊富な技術力により難題を解決します


We solve difficult problems with
considerable technical capabilities

山岳トンネルの計画・設計においては、現場条件や地質条件を的確に把握し、トンネル設計・施工に関する知識と高度な技術力が求められます。これまで培ってきた技術を継承しつつ、最新の設計・施工技術を積極的に取り入れ、高品質なインフラ整備の実現を目指しています。また、既存トンネルの維持管理においても、豊富な知見と経験を活かし、社会資本の長寿命化と安全性向上に貢献しています。

In the planning and design of mountain tunnels, it is essential to accurately assess site conditions and geological features. Advanced technical expertise and comprehensive knowledge of tunnel design and construction are required.

While inheriting the technologies we have cultivated over the years, we actively incorporate the latest design and construction techniques to achieve high-quality infrastructure development.

We also contribute to the life extension and safety of infrastructure by leveraging our extensive knowledge and experience in the maintenance and management of existing tunnels.

BIM/CIMを用いたトンネル設計
Tunnel design using BIM/CIM

超近接無導坑めがねトンネル
Ultra-close non-pilot tunnel glasses tunnel

走行型3次元計測・解析
Traveling type 3D measurement and analysis

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
関東地方整備局 長野国道事務所 MLIT Kanto Regional Development Bureau, Nagano Office of National Highway	R5国道20号諏訪バイパストンネル予備設計業務 A preliminary design of tunnel, Suwa Bypass tunnel	2025
中部地方整備局 浜松河川国道事務所 MLIT Chubu Regional Development Bureau, Hamamatsu Office of River and National Highway	令和5年度 浜松管内トンネル点検業務 Inspection for road tunnel	2025
四国地方整備局 土佐国道事務所 MLIT Shikoku Regional Development Bureau, Tosa Office of National Highway	令和5-6年度 海部野根道路(河内トンネル)詳細設計業務 A detailed design of Kawauchi tunnel	2024
東北地方整備局 湯沢河川国道事務所 MLIT Tohoku Regional Development Bureau, Yuzawa Office of River and National Highway	雄勝道路構造物設計業務 A design of road structures, Ogachi Road	2023
四国地方整備局 土佐国道事務所 MLIT Shikoku Regional Development Bureau, Tosa Office of National Highway	令和3-4年度 野根トンネル詳細設計業務 A detailed design of None tunnel	2022

設備分野

Facilities

高度化する社会インフラ整備に応えます

We contribute to provide high technology infrastructure

道路・トンネル・地下構造物・河川・港湾・橋梁など、社会インフラとして機能する各種土木構造物に必要な電気通信設備・機械設備の計画・設計を行っています。これには、施設電源、照明、防災、通信設備などが含まれ、インフラの安全性・利便性を支える重要な役割を担っています。

新設・既設改修(更新)を問わず、当社は「効率的な施設整備と維持管理運用」、「環境負荷の軽減(省エネルギー化)」、「防災・減災機能の強化」といった観点から、最新の技術動向や知見を取り入れた提案を積極的に行ってています。

これにより、持続可能な社会の実現に向けたインフラ整備を支えています。

We plan and design telecommunication facilities and mechanical facilities required for various civil engineering structures that function as social infrastructure, such as roads, tunnels, underground structures, rivers, ports, and bridges. This includes power supply, lighting, disaster prevention machinery, and communication facilities, all of which play a vital role in supporting the safety and convenience of infrastructure.

For installation and improvement of above facilities, we actively propose solutions that incorporate the latest technological trends and expertise.

These proposals focus on efficient facility development and maintenance operations, reduction of pressure on environment (saving energy), and reinforcement of functions for disaster prevention and reduction of damage.

Through these efforts, we contribute to the realization of a sustainable society by supporting resilient infrastructure development.

各種トンネル設備(受変電・照明・防災・換気・通信設備等)の設計
Tunnel facilities (Power receiving and transforming facilities, lightning, disaster prevention, ventilation, telecommunication systems)

情報通信設備の設計(ETC2.0・多重無線・テレメータ設備等)
A design of information and communication facilities,
(ETC2.0,multiplex radio, telemeter, etc.)

河川用機械設備(排水ポンプ、ゲート)の設計、治水関連設備(遊水地遠隔監視設備)の設計
A design of mechanical equipment for flood control, (pump, gate, telecontrol and telemeter, etc.)

道路設備のBIM/CIM活用(三次元設計)
BIM/CIM utilization of road facilities (3D design)

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
中部地方整備局 静岡国道事務所 MLIT Chubu Regional Development Bureau, Shizuoka Office of National Highway	令和6年度 静岡国道電気通信設備詳細設計業務 A detailed design of telecommunication facilities	2024
東北地方整備局 福島河川国道事務所 MLIT Tohoku Regional Development Bureau, Fukushima Office of River and National Highway	浅川トンネル管理設備詳細設計業務 A detailed design of management facilities for Asakawa tunnel	2023
中部地方整備局 浜松河川国道事務所 MLIT Chubu Regional Development Bureau, Hamamatsu Office of River and National Highway	令和4年度 浜松河川国道機械設備詳細設計業務 A design of mechanical facilities	2022
東北地方整備局 湯沢河川国道事務所 MLIT Tohoku Regional Development Bureau, Yuzawa Office of River and National Highway	湯沢管内電気通信設備設計業務 A design of telecommunication facilities	2021
四国地方整備局 松山河川国道事務所 MLIT Shikoku Regional Development Bureau, Matsuyama Office of River and National Highway	平成31年度 経路情報収集装置外設計業務 A design of route information collection device etc.	2020

建築分野

Architectural Design

駅の設計から 街の未来を描く

For installation and improvement of above facilities

鉄道駅舎、ペデストリアンデッキ上屋・エレベーター棟、地下広場など、みなさまの生活に関係の深い建物について、計画から設計までの一貫したサービスを提供しています。

特に鉄道駅舎においては、高架駅、地下駅、橋上駅および地平駅の新設設計はもちろん、改修・改造設計を含めた実績を有しています。

また、地下駅に求められる火災時の避難安全に関する検証も多くの実績を有しています。「駅の設計を通じて、まちづくりの一翼をなう。」この思いを胸に設計に取り組んでいます。

We provide consistent services from planning to design for structures closely connected to daily life, such as railway station buildings, pedestrian deck canopy, elevator building, and underground plazas.

In particular, we have extensive experience in the design of railway stations, including new elevated, underground, over-track, and ground-level stations, as well as renovation and modification projects.

We also have a strong track record in safety verification for evacuation during fires, which is especially critical for underground stations.

With the belief that "For installation and improvement of above facilities," we approach each project with dedication and care.

阪神本線 深江駅の設計
Fukae Station, Hanshin Main line

阪神本線 神戸三宮駅の設計
Kobe-Sannomiya Station, Hanshin Main line

山陽電車 大塩駅の設計
Oshio Station, Sanyo Electric Railway

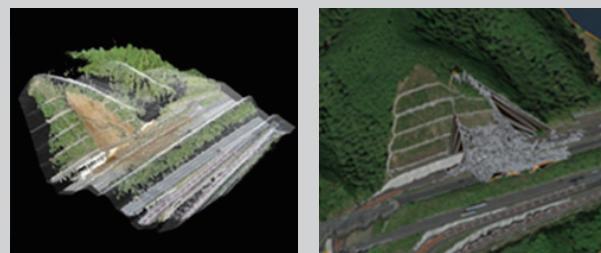
主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
東京都交通局 Tokyo Metropolitan Bureau of Transportation	地下鉄道の火災対策基準に基づく避難安全に関する検証 A study of evacuation safety based on fire protection standards for underground railways	2014～2024
広島市 Hiroshima Municipal Government	新交通西風新都線 予備設計・基本設計 A preliminary and basic design for the new transportation system, Seifu Shinto Line	2017～2024
南海電気鉄道株式会社 Nankai Electric Railway Co., Ltd.	南海線 高石駅、羽衣駅 基本・実施設計、工事監理 A basic and detail design, construction supervision of Takaishi Station and Hagoromo Station, Nankai Line	1995～2023
東葉高速鉄道株式会社 Toyo Rapid Railway Co., Ltd.	(仮称)海老川新駅 基本・実施設計 A basic and detail design of Ebigawa New Station (tentative name)	2022～2023
東京都交通局 Tokyo Metropolitan Bureau of Transportation	浅草線東銀座駅 改修実施設計 A detailed design for the improvement of Higashi-Ginza Station, Asakusa Line	2021～2022

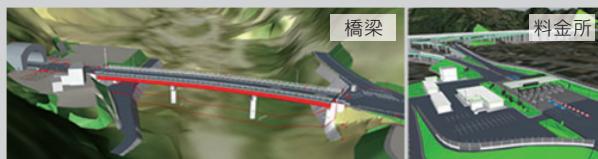
メンテナンスマネジメント分野

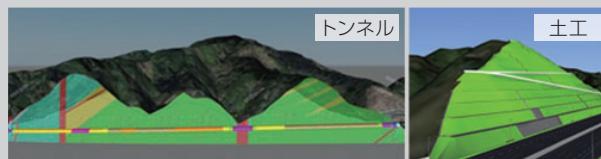
Structural Maintenance and Management

新技術を活用した効率的・効果的なインフラ管理


Efficient and effective infrastructure management utilizing new technology

構造物の特徴を踏まえた適切な点検によって、施設の健全性を診断します。また、施工、気候、地形、地質等の条件を考慮した材料試験や構造解析によって、損傷の原因を推定し、最適な対策を提案します。さらに、ドローン、レーザー測量、BIM/CIM等の新たな手法を活用し、構造物を保有する組織に適した効率的で効果的な維持管理マネジメントを提案します。


We can diagnose the health of the infrastructure by proper inspection based on the characteristics of the structure. We can propose the most suitable measures through proper material testing and structural analysis considering conditions such as construction, climate, landform and geology. And we can propose management for efficient and effective maintenance suitable for the organization that owns the infrastructure utilizing new technology such as drones, laser surveying, and BIM/CIM (Building/Construction Information Modeling, Management).


ドローン画像のLive配信による異常点検
Live Drone Image Inspection

3次元データを活用した崩落土量の算出
Calculation of the collapsed soil amount using 3D data

道路管理BIM/CIMモデルの例
The example of Building/Construction Information Modeling for road management Bridge/Toll gate/Tunnel/ landform

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
阪神国際港湾株式会社 Kobe-Osaka International Port Corporation	阪神港におけるドローン利活用実証実験及び検証業務(その2) Drone Utilization Demonstration Experiment and Verification Project at Hanshin Port (Part 2)	2025
国土交通省 道路局 MLIT Road Bureau	令和6年度 今後の大規模災害等に備えた道路管理に関する検討業務 The Study of Road Management in Preparation for Future Large-Scale Disasters, etc. 2024	2024
豊田市 Toyota Municipal Government	道路施設の維持管理への3次元データ活用検討業務委託 The Study of Utilizing 3D Data for Road Facility Maintenance and Management	2024
中日本ハイウェイ・エンジニアリング東京株式会社 Central Nippon Highway Engineering Tokyo Company Limited.	2023年度 BIM/CIM活用による業務効率化検討支援業務 A study of improved efficiency of highway works using BIM/CIM 2023	2024
国土交通省 道路局 MLIT Road Bureau	令和3年度 道路トンネルの効率的な維持管理に向けた3次元データの活用方策検討業務 A study of utilization of 3D data for efficient maintenance and management of road tunnels	2022

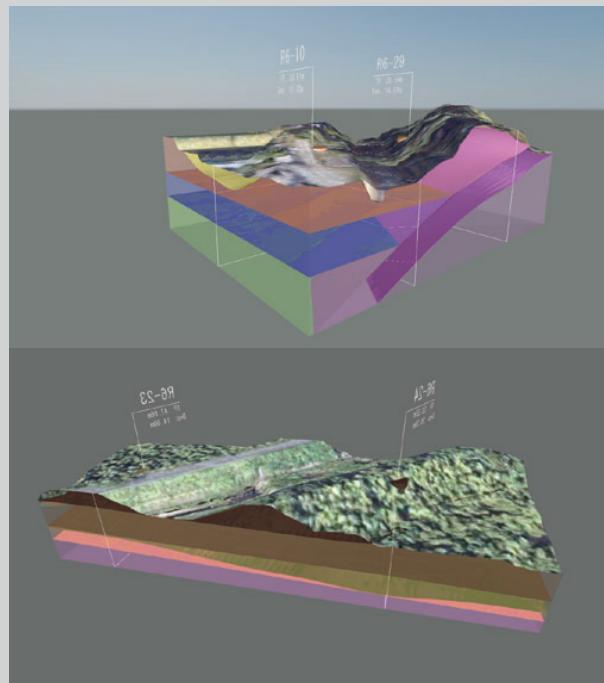
地盤分野

Geotechnology

地盤との対話により、過去と現在を知り将来を予測します

We estimate ground conditions of the future through the examination of the past and present

インフラを整備・保全するときには、まず「地盤と対話」する必要があります。私たちは、基礎技術である現地踏査、地盤調査・計測により「過去」を確認し、「現在」を把握し、各種解析技術を活用して「将来」を予測します。また、防災関連技術、環境関連技術を駆使して、安全・安心で豊かな社会づくりと修復・整備、維持管理に貢献しています。


When developing and maintaining infrastructure, we first have to know about ground conditions. We obtain a picture of the "past" and assess "existing" conditions by utilizing basic technology such as site reconnaissance, and geotechnical survey and measurement, and predict the "future" using various analysis techniques. We also contribute to create a safe and secure society through our geotechnical skills.

透過型堰堤
Slit type SABO dam

不透過型堰堤
Impermeable type SABO dam

ボーリングデータをもとにした地盤の三次元可視化
3D visualization of ground conditions based on boring data

道路・鉄道・トンネルなどの防災計画
Disaster prevention planning for road, railway and tunnel

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
近畿地方整備局 滋賀国道事務所 MLIT Kinki Regional Development Bureau, Shiga Office of National Highway	滋賀国道事務所管内事前通行規制区間検討資料作成他業務(事務所長表彰・技術者表彰 受賞) A study for preparation of preliminary traffic control section	2024
中部地方整備局 静岡河川事務所 MLIT Chubu Regional Development Bureau, Shizuoka Office of River	安倍川水系砂防堰堤予備設計業務(事務所長表彰・技術者表彰 受賞) A preliminary design of Sabo Dams in the Abe River System	2024
近畿地方整備局 福井河川国道事務所 MLIT Kinki Regional Development Bureau, Fukui Office of River and National Highway	国道8号大谷地区法面観測他業務(事務所長表彰・技術者表彰 受賞) Slope monitoring in the Otani Area of National Route 8	2023
西日本高速道路株式会社 関西支社 奈良工事事務所 West Nippon Expressway Company Limited, Nara Construction Office of Kansai Branch	大和北道路奈良地区水文調査業務(令和3年度)(所長表彰 受賞) A hydrological study for the Nara Section of the Yamato-Kita Road	2023
近畿地方整備局 紀南河川国道事務所 MLIT Kinki Regional Development Bureau, Kinan Office of River and National Highway	串本太地道路串本東地区地質調査業務(局長表彰・技術者表彰 受賞) A geological survey of Kushimoto-Taiji Highway, Kushimoto-Higashi area	2022

事業評価・社会的合意形形成分野

Project Evaluation and Social Consensus Formation

事業を円滑に進めるための技術とノウハウを蓄積しています

We accumulate technique and know-how
for the smooth progress of projects

予算と時間の制約がある中で、今日の公共施設は「造ること」から「賢く使うこと」に重点が移っています。このため、私たちは、効率的に公共事業を進めるための整備効果分析、費用便益分析、プライオリティ分析、F/S等による事業の評価を行うとともに、社会実験、PI、コミュニケーションデザインによる合意形成の支援技術や、PPP／PFI等の公民連携のための技術を提供します。

Today, within a limited budget and time, "To use wisely public facilities" is more important than "To construct public facilities". As for efficient progress of projects, we perform impact analysis, cost performance analysis, priority analysis, F/S and other analyses. In addition, we provide technique to make mutual agreement by pilot programs, public involvement and communication design. We also provide technique for public and private cooperation such as PPP/PFI.

官民連携による公園利活用の合意形成支援
Support for consensus building on park utilization through public-private partnerships

中之島周辺における空間再編の社会実験
出典:大阪市ホームページ

A pilot program for "Public Space Reconstruction Project around Nakanoshima" in Osaka
Source: Web page of Osaka Municipal Government

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
京都市 Kyoto Municipal Government	宝が池公園を拠点としたエリアマネジメント試行業務 Area management trial operations based in Takaragaike Park	2022
関東地方整備局 東京港湾事務所 MLIT Kanto Regional Development Bureau, Tokyo Office of Port	東京港国際海上コンテナターミナル整備効果検討業務 A study of development effect of International Container Terminals in Tokyo Port	2021
大阪市 Osaka Municipal Government	中之島周辺の交通影響等検討業務委託 A study of traffic impacts around Nakanoshima	2021～
京都市 Kyoto Municipal Government	京都市「歩いて楽しいまちなか戦略」調査 A study for "The pleasant, pedestrian-friendly downtown strategy" in Kyoto	2006～2020
中部地方整備局 北勢国道事務所 MLIT Chubu Regional Development Bureau, Hokusei Office of National Highway	北勢国道管内幹線道路網整備検討業務 A study of development of a highway network within the jurisdiction of the Hokusei National Highway Office	2018

補償分野

Compensation

補償業務管理士が用地取得をサポートします

Our compensation consultant manager supports
a smooth site acquisition

公共事業執行のための用地の取得を円滑に進め事業が計画的に進むよう、事業者をサポートします。主として収用損失補償及び事業損失補償に関し、土地調査、建物調査、図面・調書作成から補償額・復旧費算定、さらには地権者への補償説明に至るまで、一貫したサービスを提供いたします。

We support public agencies to ensure a smooth site acquisition for the implementation of public-works projects. Mainly for the compensation of land expropriation and project losses, we provide consistent services ranging from land survey, building survey, drawing-up of plats and records, compensation and restoration cost estimation, and explanation of compensatory policies to landowners.

高架橋による日照補償のための調査
Compensation for sunshine obstruction caused by a viaduct

道路整備のための用地調査
Site research for road improvement

損傷調査
A damage survey

主な業務経歴

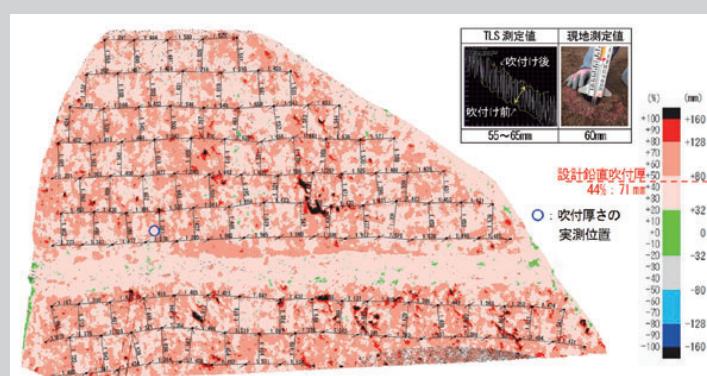
発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
四国地方整備局 MLIT Shikoku Regional Development Bureau	令和6年度 太陽光発電設備に係る補償改正検討資料作成等業務 Preparation of study materials for compensation revision related to solar power generation facilities	2025
中国地方整備局 広島西部山系砂防事務所 MLIT Chugoku Regional Development Bureau, Hiroshima West mountain range Sabo Office	令和5年度 広島西部山系家屋調査その3業務 A survey of buildings, Hiroshima West mountain rang	2024
西日本高速道路株中国支社 松江高速道路事務所 West Nippon Expressway Company, Limited, Matsue Expressway Office of Chugoku Branch	令和6年度 安来道路吉佐地区家屋事前調査 A preliminary survey of buildings in the Kissa Area, Yasugi Road	2024
九州地方整備局 下関港湾事務所 MLIT Kyusyu Regional Development Bureau, Shimonoseki Office of Port and Habor	令和5年度 下関港海岸建物等事後調査業務 A post-survey of project loss for buildings at Shimonoseki Port coast	2024
中日本高速道路株名古屋支社 Central Nippon Expressway Company, Limited, Nagoya Branch	新名神高速道路 箕野町箇野地区水枯渇費用負担金算定業務 A cost burden calculation or water depletion compensation in the Komono Area of Komono Town related to the Shin-Meishin Expressway	2023

測量分野

Survey

地理空間情報の正確な計測をマネジメントする
We manage exact measurement of geospatial information

測量ICT技術(レーザー計測、UAV)を元に、地形地物等の正確な三次元測量を行い三次元設計に活かしています。更に時間も加えた四次元測量として、経年変化による構造物等の維持管理に活用しています。また、三次元データを用いた立体モデルの作成を行い、防災設計等の基礎データ作成に努めています。


Based on ICT measurement technology (laser measurement, GIS), we perform exact 3D measurement of topography and structures and put the result to 3D design. In addition, we perform 4D measurement adding time and put them to structural maintenance and management under aging. And we also build 3D data based models, thus developing basic data usable for disaster prevention and others.

空撮(UAV)による写真測量
Photogrammetry by using aerial images (UAV)

地上型レーザー計測機による三次元測量
3D survey using laser measurement

レーザー計測機による吹付厚さの管理イメージ図
Image of controlled shotcrete thickness by laser measurement instruments

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
大阪市高速電気軌道株式会社 Osaka Metro Co.Ltd	北港テクノポート線測量業務委託 Surveying for the Hokko Technoport Line	2025
中部地方整備局 高山国道事務所 MLIT Chubu Regional Development Bureau, Takayama Office of National Highway	令和4年度 高山国道路管内防災点検設計業務 Inspection and design for disaster prevention	2024
大阪府 高石市 Takaishi Municipal Government, Osaka Prefecture	南海本線・高師浜線(高石市)連続立体交差事業に伴う用地交換登記事務手続き業務委託(その6) Administrative Procedures for Land Exchange Registration related to the Continuous Grade Separation Project, Nankai Main line / takashinohama line	2023
阪神高速道路株式会社 建設事業本部 Hanshin Expressway Company Limited, Construction Business Division	大和川線用地確定測量業務(2021) A survey for determining property line, Yamato River Line	2022
近畿地方整備局 滋賀国道事務所 MLIT Kinki Regional Development Bureau, Shiga Office of National Highway	米原バイパス鉄道交差施設詳細設計業務 A detailed design of facilities crossing the railway, Maibara Bypass	2020

BIM/CIM・インフラDX分野

BIM/CIM・Infrastructure DX

BIM/CIMからインフラDXへ
～デジタルを活用した生産性の高度化、働き方改革～

From BIM/CIM to Infrastructure DX
～Enhancing Productivity and Reforming Work Styles through Digital Technologies～

生産性の高度化・効率化、品質確保といった社会要請に応えるためには、デジタル技術の利用者および利用場面のさらなる拡大が不可欠です。

私たちは、BIM/CIMデータをもとに、VR・AR・MRやクラウド、メタバースといった最新ICTをフル活用したインフラDXの仕組みづくりやシステム開発に取り組み、社内の生産プロセスや受注業務の実務において活用しています。その取り組みは、働き方改革、新4K（給与、休暇、希望、かつこいい）の実現、業界の魅力向上、社員のモチベーション向上にもつながっています。

To meet growing societal demands for advanced productivity, operational efficiency, and quality assurance in infrastructure development, it is essential to further expand both the user base and application scenarios of digital technologies.

We are actively engaged in the development of infrastructure DX systems and solutions that fully leverage BIM/CIM data in combination with cutting-edge ICT tools such as VR, AR, MR, cloud platforms, and the metaverse. These technologies are being applied not only in our internal production workflows but also in practical project execution.

Such initiatives contribute to workstyle innovation, enhancement of industry appeal, and increased employee motivation.

ゲーム用端末を用いたBIM/CIMモデル操作
Manipulation of BIM/CIM Models Using Gaming Devices

BIM/CIMモデルを用いた自動車運転シミュレーション（当社開発）
Driving Simulation Using BIM/CIM Models (Proprietary Development)

スマートグラスを用いたBIM/CIMモデル閲覧
Viewing BIM/CIM Models Through Smart Glasses

主な業務経歴

発注者 (CLIENT)	件名 (PROJECT)	完成年 (YEAR)
近畿地方整備局 近畿技術事務所 MLIT Kinki Regional Development Bureau, Kinki Technical and Engineering Office	近畿地方整備局BIM/CIM活用推進業務 A study of BIM/CIM utilization	2025
四国地方整備局 四国技術事務所 MLIT Shikoku Regional Development Bureau, Shikoku Technical and Engineering Office	令和6年度 BIM/CIM活用推進検討外業務 A study of BIM/CIM utilization	2025
近畿地方整備局 近畿技術事務所 MLIT Kinki Regional Development Bureau, Kinki Technical and Engineering Office	近畿地方整備局BIM/CIM活用推進業務 A study of BIM/CIM utilization	2024
四国地方整備局 四国技術事務所 MLIT Shikoku Regional Development Bureau, Shikoku Technical and Engineering Office	令和5年度 BIM/CIM活用推進検討外業務 A study of BIM/CIM utilization	2024
近畿地方整備局 近畿技術事務所 MLIT Kinki Regional Development Bureau, Kinki Technical and Engineering Office	近畿地方整備局BIM/CIM活用推進業務 A study of BIM/CIM utilization	2023

www.cfk.co.jp

中央復建コンサルタンツ株式会社

本 社	〒533-0033	大阪市東淀川区東中島4-11-10	TEL 06(6160)1139
東京本社	〒102-0083	東京都千代田区麹町2-10-13	TEL 03(3511)2001
東北支社	〒980-0011	仙台市青葉区上杉2-3-7 K2小田急ビル	TEL 022(267)1459
中部支社	〒460-0003	名古屋市中区錦2-3-4 名古屋錦フロントタワー	TEL 052(220)2920
神戸支社	〒651-0087	神戸市中央区御幸通6-1-10 オリックス神戸三宮ビル	TEL 078(230)8200
中国支社	〒732-0052	広島市東区光町1-12-16 広島ビル	TEL 082(568)0556
四国支社	〒760-0019	高松市サンポート2-1 高松シンボルタワー・サンポートビジネススクエア	TEL 087(825)5701
九州支社	〒812-0038	福岡市博多区祇園町4-61 いちご博多祇園ビル	TEL 092(282)0441